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1 Introduction

Nowadays, everything is tied to the Internet in some way. Tim Berners-Lee’s
invention, meant to ease the communication and collaboration inside the CERN
research facility, is now a dominating part of the life of each and every one
of us. Millions of people use it every day to transfer sensitive data, like doing
bank transfers or sharing company documents. If a third party could obtain5

this information it would wreak havoc to the companies or individuals affected.
Because of this, there are security measures in place. In fact, they are

used in way more areas than previously mentioned, ensuring safe and private
browsing and communication. That is where the main subject of this paper
comes in: Cryptography. Although cryptography was used long before the10

Internet, for example Caesar’s use of the substitution cipher or the ingenious
Enigma machine used by the Germans in World War II, it is now used all over
the world.

Personally, I’m fascinated by technology in general, but cryptography is
what intrigues me most at the moment. Current implementations combine15

mathematics and computer science in a unique way, especially the mechanics
of asymmetric encryption, discussed in section 6, fascinate me.

Due to the wide distribution of cryptography I will need to strictly limit
the topics covered, which is why I am focusing on the most frequently used
implementations and a few older, simpler ones to begin on. I also had to leave20

out most of the mathematical part, because proving the security of each cipher
covered in this paper would’ve raised the page count to around 30. Because of
the technical nature of this subject I have focused on digitally published papers
rather than printed books, which in addition results in enhanced availability
of the cited material.25

2 Preliminaries

2.1 XOR

XOR (exclusive or) is a logical operation performed on two operands that
results in one if both values have opposite truth values, i.e. only one operand
is true. In this paper, XOR operations will be denoted using the

⊕
-operator.

The following truth table should clarify the XOR operation:

Input1 Input2 Output (Input1
⊕

Input2)
0 0 0
0 1 1
1 0 1
1 1 0

2.2 Sets

Finite sets will be denoted using {0, 1}n, with n being the number of elements30

in the set rather than a power, because we are in binary context. Further on,
|S| will denote the size of a set S, although in this case it equals n.

1
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2.3 Functions

Functions map one or multiple inputs they receive as arguments to one or
multiple outputs. They are deterministic, which means that when neither the
input nor the function itself changes, the output will stay the same. To denote
functions, the notation f : X → Y is used, with f being the function, X the
input space and Y the output space.5

2.4 Randomness

2.4.1 Random Variables

A random variable X is a function X : S → V with V being the set where
the random variable takes it’s values. For example, with X : {0, 1}n →
{0, 1};X(y) = lsb(y) ∈ {0, 1} (lsb is an operation extracting the least sig-
nificant bit(s) of a binary number, the bits on the far right) and S being
distributed uniformly, the probability of X being 0 is equal to the probability10

of it being 1.

2.4.2 Randomized Algorithms

While a deterministic algorithm y ← A(m) always maps the point m to the

point A(m), a randomized algorithm y ← A(m; r) with r
R←− {0, 1}n ( r is a

random variable) maps the point m to the output space A(m), thus resulting
in multiple possible outputs for the same m depending on r.15

2.5 Pseudo-Randomness

2.5.1 Pseudo-Randomness

Computers generally reside to Pseudo-Random Generators to achieve random
looking output to use for various tasks rather than truly random sequences.
“The reason lies in many extra benefits provided by pseudo-random generators.
[...] [O]ne often needs to repeat the exact same sequence. With a truly random
generator, one actually has to record all its outcomes: long and costly. The20

alternative is to generate pseudo-random strings from a short seed.”1 Those
seeds play an important role in cryptography, because usually, passwords, shared
secrets etc. will be used as seeds for the pseudo-random generator.

2.5.2 Pseudo-Random Generator

A pseudo-random generator expands a short input (seed) to a large, seemingly
random output. Therefore, a PRG G with k as seed produces the output25

G(k)� k, which should be indistinguishable from r
R←− {0, 1}n.

2.5.3 Unpredictability

For a PRG to be unpredictable, there may not be a single statistical test that
can distinguish the output of the PRG from the output of a truly random
function.

1http://www.cs.bu.edu/fac/lnd/toc/z/node24.html

2
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2.5.4 Pseudo-Random Functions

A pseudo-random function is a function defined over (K,X, Y ) : F : K×X →
Y such that there exists an efficient algorithm to evaluate F (k, x). All output
from a PRF should be indistinguishable from random, regardless of the input,
as long as the function itself was drawn at random.

2.5.5 Pseudo-Random Permutations

A pseudo-random permutation is a function defined over (K,X) : E : K×X →5

X such that there exists an efficient algorithm to evaluate E(k, x). The PRP
E(k, ·) is one-to-one, so there exists an effective inversion algorithm D(k, y). A
PRP should be indistinguishable from a truly random permutation.

2.6 Modular Arithmetic

2.6.1 Modular Arithmetic

“Modular arithmetic [...] is a system of arithmetic for integers, where numbers
“wrap around” after they reach a certain value - the modulus”2, here denoted10

as N . Although modular arithmetic is often denoted using (mod n) after an
equation, here we will use in ZN instead.

To explain modular arithmetic, the 12-hour clock is a splendid example.
Basically, while a day has 24 hours, the clock can only display the hours one
to twelve. Thus, on a 12-hour clock:15

14 ≡ 2 in Z12 ; 17 ≡ 5 in Z12 ; 23 ≡ 11 in Z12 with ≡ denoting a congruence
relation.

2.6.2 Greatest Common Divisor

For a pair of integers a and b the greatest common divisor is denoted by
gcd(a, b) = x. If we use the integers 12 and 18 as example, we get gcd(12, 18) =
6, because both 12 and 18 are divisible by 6, but not by any integer higher20

than that.
For every integer pair a, b there exists another integer pair x, y such that

x × a + y × b = gcd(a, b). If gcd(a, b) = 1 we say that a and b are relatively
prime.

2.6.3 Modular Inversion

While inverting rational numbers is considered easy, for example the inverse of25

2 being 1
2
, inverting integers in ZN is considered to be very hard. To invert an

element x in ZN we need an element y in ZN such that x × y = 1 in ZN , in
which case y = x−1. For example, let N be an odd integer. Then the inverse of
2 in ZN is N+1

2
, because 2× (N+1

2
) = N + 1 ≡ 1 in ZN .

But beware, not every element in ZN is invertible! For an element x in ZN30

to be invertible, gcd(x,N) = 1 must hold. We will call the set of invertible
elements in ZN from now on (ZN)∗, which basically means that (ZN)∗ = {x ∈
ZN : gcd(x,N) = 1}.

2http://math.wikia.com/wiki/Modular_arithmetic
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2.6.4 Generators

The set of invertible elements (ZN)∗ is a cyclic group, which means that every
element in (ZN)∗ can be generated from a single element g inside that group
by raising g to a higher power, that is there exists a g ∈ (ZN)∗ such that
{g0, g1, g2, . . . , gp−2} = (ZN)∗. Any number inside (ZN)∗ which can be used
as g is then called a generator of (ZN)∗ and the set {1, g, g2, . . .} is called the5

group generated by g, denoted as <g>. If we use N = 7 and g = 3 ∈ (ZN)∗ as
an example, <g>would be {30, 31, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5}.

Similar to modular inversions, one must watch out here, because not every
element in (ZN)∗ can be used as a generator!

A shortcut to the size of the (ZN)∗ group is provided by Euler’s totient10

function, which will be denoted as ϕ(N), where ϕ(N) = |(ZN)∗|. When using
the totient function on a multiple of two known primes, one can easy compute
it using ϕ(pq) = (p− 1)× (q − 1).

2.6.5 Modular e’th Roots

With p being a prime and c, e ∈ Zp, x
e ≡ c in Zp is called an e’th root of c. For

example, 7
1
3 ≡ 6 in Z11 because 63 = 216 ≡ 7 in Z11.15

Just like previously, we must pay attention, because not every e’th root
exists. To determine the existence of an e’th root we have two options: The
easiest of those would be to check if gcd(e, p − 1) = 1, because then for all

c ∈ Z∗p, c
1
e exists in Zp. The other case is for e = 2, which we will cover in the

next subsection.20

2.6.6 Square Roots (e’th Roots with e=2)

Should p be an odd prime, we would check for gcd(2, p−1) 6= 1 to determine the
existence of the square root. If it does exist and we succeed in finding x2 in Zp,
it could have originated from both x and −x in Zp. All x in Zp which have a
square root in Zp are called quadratic residues. When p is an odd prime, the
number of QR’s in Zp is (p− 1)/2 + 1.25

2.6.7 Discrete Logarithm

For a prime p > 2 and g in (Zp)
∗ consider the function x 7→ gx in Zp. The

inverse of that function would be the discrete logarithm of g on gx, denoted by
Dlogg(g

x) = x. The following table uses Z11 as example:

x in Z11 1 2 3 4 5 6 7 8 9 10
Dlog2(x) 0 1 8 2 4 9 7 3 6 5

To further illustrate this, here are some of them in detail:
Dlog2(5) = 4 ⇔ 24 = 16 ≡ 5 in Z11, Dlog2(8) = 3 ⇔ 28 = 256 ≡ 3 in Z11,30

Dlog2(1) = 0⇔ 20 = 1 ≡ 1 in Z11.
The discrete logarithm is considered to be a hard problem, because currently

no efficient algorithm can compute the discrete logarithm in large (Zp)
∗ in short

time.

4
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2.6.8 Trapdoor Functions

“Trapdoor functions are (injective) functions that are easy to evaluate but hard
to invert unless given an additional input called the trapdoor. Specifically, the
classical security notion considered for trapdoor functions is one-wayness, which
asks that it be hard to invert (except with very small probability) a uniformly
random point in the range without the trapdoor.”3 Further explanation will5

take place in section 6.2.

3 Stream Ciphers

3.1 General

Stream ciphers are symmetric key ciphers (the same key is used for both
encryption and decryption) that combine a message given as a plaintext with a
keystream, which is pseudorandomly generated from an input key, to a ciphertext.
Although there are many ways to combine the message with the keystream, in10

digital cryptography this is usually done using XOR-operations. Starting with
the simplest stream cipher available in section 3.2, we will also discuss Salsa20
later on in section 3.3, although not as detailed as the first one.

3.2 The One-Time Pad

3.2.1 The One-Time Pad (1927, Gilbert Vernam)

The one-time pad is a very simple cryptosystem in which a message is “masked”
using a chunk of data of the same length, resulting in a ciphertext. It is one15

of the simplest ciphers available, very easy to apply in digital environments
and can under certain circumstances even be perfectly secure. The downside
is that the aforementioned certain circumstances are the strictest possible: as
indicated by the name, the key must not be reused, or the resulting ciphertexts
will be fairly easy to crack.20

Let M and be the message space and C be the ciphertext space over {0, 1}n.
Let K be the key space over {0, 1}n. Let m ∈M be the message.
Let k be the key, randomly distributed over K.
The encryption of m under the key k is E(k,m) = m

⊕
k = c.

Figure 1: Theoretical implementation of the OTP in a binary environment.

3.2.2 Using the OTP As a Stream Cipher

In order to use the one-time pad as a stream cipher, we will need to replace the
random key by a pseudorandom one, for which we will use an unpredictable
pseudo random generator. This will allow us to extend a small seed to a
seemingly random sequence long enough to act as a key for the OTP, regardless
of the message length.25

3O’Neill, Adam, Stronger Security Notions for Trapdoor Functions and Applications,
Atlanta 2010

5
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Let G(k) be the key generated by the PRG G under the seed k.
The encryption of m under the seed k is E(k,m) = m

⊕
G(k) = c.

Figure 2: Theoretical implementation of the OTP as a stream cipher.

3.2.3 Main Flaw of the OTP

As already mentioned in section 3.2.1, re-use of the key makes it possible to
crack the OTP with ease. Due to the message simply being XOR’d with the key,
multiple ciphertexts created with different messages but the same key share
the relationship indicated in figure 3.

Let m1 ∈M and m2 ∈M be messages where m1 6= m2.
c1 ← m1

⊕
G(k), c2 ← m2

⊕
G(k)

c1
⊕

c2 = m1

⊕
m2

Figure 3: Relationship of OTP-encrypted messages that share the same key.

Therefore, with enough ciphertext pairs given, one can obtain the key by5

comparing the XOR-values with language-specific letter redundancy data. This
flaw is the main reason for the one-time pad to be considered generally im-
practical. Also, please note that the OTP in it’s current state does not protect
against unwanted changes, which can occur due to an attacker, because of
communication errors, through drive corruption and so forth.10

3.3 Salsa20

3.3.1 Salsa20 (2005, Daniel J. Bernstein)

Part of the eSTREAM portfolio, Salsa20 is a family of stream cipher algorithms
by Daniel J. Bernstein. Snuffle 2005 is the encryption function of that family
and it’s using “a strong cryptographic hash function [...] to efficiently encrypt
data”4. In its entirety, the Salsa20 algorithm family consists of 3 main functions
(for hashing, expanding and encrypting input) with some of them depending on15

smaller, custom implementations done by Bernstein. Discussing all algorithms
in detail would go beyond the scope of this paper, for that see source 33. The
encryption function itself uses a long chain of simple operations to effectively
encrypt given data, which can be generalized as 32-bit addition, 32-bit exclusive-
or and constant-distance 32-bit rotation (also called byte shifting).20

When using the primary variation of Salsa20 one needs to supply a 256-bit
key and a 64-bit nonce. A nonce is typically a short sequence which is required
to be unique to guarantee safety. Often, a counter that is present on both
the senders and the receivers side and increasing every time a message gets
exchanged is used as a nonce, as it’s value does not need to be transmitted25

along with the message and is generally considered to be safe enough. The
given input gets expanded into a 270-byte stream and XOR’d with the first b
bytes of the message.

Unlike other popular stream ciphers Salsa20 does not incorporate the plain-
text of the message in any way, so the resulting ciphertext is entirely indepen-30

dent of the message supplied. Another feature of this cipher is the generation

4Bernstein, Daniel J., Salsa20 design, Chicago 2005
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of a block-divided output stream, similar to block ciphers discussed in the
next section, which allows for random reads in the output stream and - more
important - for parallelism.

3.3.2 Parallel Computing

With multi-core processors being a standard for multiple years now, parallel
computing has become an important method to achieve a better performance.5

Basically, the task (in this case “encrypt message m under the key k and nonce
n”) is split into smaller tasks (i.E. “encrypt message m[0− 4] under the key k
and nonce n”, “encrypt message m[5− 9] under the key k and nonce n”, etc.)
and handled by each of the CPU cores independently. Using synchronization,
the results of the tasks will be merged into the final output stream.10

But for ciphers to allow for parallel execution there are certain design
specifics to keep in mind, some of which bear negative sides. The method
used here is the most widespread one: dividing the output into blocks achieves
concurrency easily, but produces some overhead in the output stream as the
hash of both the key and the nonce need to be present in each block of the15

output stream.

4 Block Ciphers

4.1 General

Block ciphers are symmetric key ciphers that operate on fixed-size blocks
(specified by the cipher’s blocksize) of plaintext and output the ciphertext
equivalent of that block under a supplied key. For block ciphers it is possible
to run multiple operations on one block of ciphertext, resulting in a variety of20

combinations arising from this, some of which are covered later in this section.
Starting with a now deprecated block cipher, the previous NIST (National
Institute of Standards and Technology) standard DES which uses a Feistel
network, we’ll continue with the current NIST standard AES, which takes
another, fairly different approach on applying several operations to the blocks.25

4.2 Data Encryption Standard

4.2.1 Data Encryption Standard (1977, IBM)

Once a federal standard, the Data Encryption Standard, abbreviated DES, was
developed in the 70s at IBM based on the work of Horst Feistel, which is why
the main function of the cipher is called the Feistel function. DES originated
from IBM’s Lucifer cipher which was slightly modified by the U.S. National
Bureau of Standards and released under it’s new name. Due to those changes30

being minimal, DES is considered to be a different version of Lucifer rather
than it’s successor and thus considered to be the first publicly available block
cipher.

Please note that DES is already deprecated and not considered safe anymore.
The Electronic Frontier Foundation showed 1998 that DES could be broken35

with a simple brute force attack, like described in section 4.2.4 and shown in
section 4.2.5. While that was the most popular cracking of DES, one year earlier

7
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the DESCHALL Project already succeeded in decrypting a DES-encrypted
ciphertext with an unknown key using thousands of computers connected via
the Internet as part of a contest series sponsored by RSA Security. Incipient
stages of DES cracking have existed since the late 70s, but those were just not
feasible at that time, because it would’ve needed several million dollars to be5

carried out.

4.2.2 DES Core - the Feistel Network

The Data Encryption Standard is considered to be a typical Feistel cipher,
because it follows a scheme designed by the German cryptographer and physi-
cist Horst Feistel, which is called the Feistel network. When embarking on a
plaintext block, the 64-bit input, consisting of 56 bits of the message and 8 bits10

for parity checking, is split in two 32-bit halves and each half gets forwarded
into the initial permutation. When encrypting, the two permuted halves R0
and L0 are then processed like shown in figure 4, with the 16 iterations (often
called rounds) being identical processing stages. One iteration consists of the
“upper” half being transformed by the Feistel function and then XOR’d with15

the “lower” half. Along with the half block a subkey, derived from the key given
to the cipher, is given to the Feistel function. The subkey derivation process
is quite long, for now it’s enough to say that the main key runs through a
permutation and then enters a phase similar to the Feistel network. Apart from
the last iteration, after the XOR-operation took place, the halves swap places,20

which means that the previously “lower” half is now on top and vice versa.
After all iterations, the final permutation is applied to the block halves called
“L 16” and “R 16” in figure 4, which are then merged together and form the
ciphertext.

64bit
Plaintext FEISTEL

FUNCT.
FEISTEL
FUNCT.

FEISTEL
FUNCT.

FEISTEL
FUNCT.

64bit
Ciphertext

Iterations1 Iterations2 Iterations15 Iterations16
Rs0

Ls0

Ls16

Rs16

sk0 sk1 sk14 sk15

roundperm.

Figure 4: Encryption using the Feistel Network in DES

To decrypt a DES-encrypted ciphertext, one simply needs to run the cipher-25

text through the Feistel Network again, but swap the halves before the initial
permutation and apply the subkeys in reverse order, as indicated in figure 5.

64bit
Ciphertext FEISTEL

FUNCT.
FEISTEL
FUNCT.

FEISTEL
FUNCT.

FEISTEL
FUNCT.

64bit
Plaintext

Iterations1 Iterations2 Iterations15 Iterations16
Ls16

Rs16

Rs0

Ls0

sk15 sk14 sk1 sk0

Figure 5: Decryption using the Feistel Network in DES

8
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4.2.3 The Feistel Function in DES

Unique to each implementation of the Feistel network is the Feistel function
which operates on a half block and a subkey. The length of each subkey in
DES is 48 bits, which means that the 32-bit input, the half block given to the
Feistel function, needs to be expanded to 48 bits to continue processing. This
is done using DES’ expansion permutation, which duplicates some bits in order5

to reach the desired length. The - now 48-bit long - input half-block will then
be XOR’d with the subkey. Then, the data is split into 8× 6-bit pieces which
will be processed by 8 separate substitution boxes (S-boxes), mapping the 6
input bits to 4 output bits, each box using it’s own specific lookup table (similar
to a ruleset) to determine the output. Thus, each S-box is a different function10

{0, 1}6 → {0, 1}4. The S-boxes are what provide the security of DES - trying
to reverse the look-up without knowing the key would result in a tremendous
amount of combinations. After going through the S-boxes, the 32 output bits
of these will be merged using a fixed permutation, called the P-box.

4.2.4 Exhaustive Search Attacks

Limiting the scope to cryptography, exhaustive search attacks are a range of15

attacks on ciphers that are as simple as possible - they don’t exploit specific
weaknesses or utilize known connections between ciphertexts and/or plaintexts.
The most well known exhaustive search attack is the brute force attack, which
simply tries all available keys on a cipher until it has found the correct one.
While this will definitely yield a correct result, it often just isn’t feasible with20

current hardware, because it would take too much time. The time required is
linked to the cipher strength - in the case of block ciphers it is determined by
the block size.

For example, a message encrypted with 256-bit AES has 1.1× 1077 possible
keys, trying to crack it with the currently fastest supercomputer, which is,25

according to source 46, capable of 17.59 Petaflops (quadrillions of floating
point calculations per second), when assuming 1500 Flops are required to try

a key (which is quite optimistic), it would take (1.1× 1077)/ (17.59×1015)
1500

seconds
to crack a key. This equals to roughly 9.38× 1063 seconds, around 1.09× 1059

days, approximately 2.97× 1056 years or - frankly - 297 septendecillion years.30

Other exhaustive search attacks are dictionary attacks, which work similar
to brute force attacks but limit the combinations they try on combinations
of words that they look up in prepared files, often extracted from dictionaries.
While dictionary attacks are way faster than normal brute force attacks, there
is a quite big possibility that they won’t yield any results and their overall35

running time is usually still way too long to be worthwhile.

4.2.5 Exhaustive Search Attack on DES

Although generally ciphers are secure enough to withstand exhaustive search
attacks, as shown in the previous section, DES is a fine example for one that
isn’t - anymore. When DES was released to the public in 1977 it certainly
met the standards, there was no feasible attack in sight. But as time passed,40

technology improved, and it was easier to encrypt and decrypt with DES. While
this speed benefit was good for the computer industry, it increased way faster

9
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than predicted at the time DES was developed. The cipher strength of DES is
- in fact - not 264 as one might think because of it’s block size, but rather 256

because of the eight bits used for parity checking as mentioned in section 4.2.2.
This results in “only” 7.2× 1016 possible keys for DES, which is extremely low
in comparison to the amount used for the example in section 4.2.4.5

If we do the calculation again, using the possible combinations for DES

instead of the AES values, we see that it would take (7.2 × 1016)/ (17.59×1015)
100

seconds to crack a key. Please note that the Flops required to try a key has
been lowered to a way smaller estimate because of the simpler cipher used.
Using the Titan to crack a DES key would take merely 409 seconds, which is10

a little less than 7 minutes.
This result means that it would even be possible for a small network of

consumer range computers with modern hardware to crack a DES key in some
weeks, which clearly makes it unsuitable for anything remotely confidential.

The machine built by the EFF in 1998 used 1, 536 custom-built chips and15

was able to crack a DES key in a couple of days, which in turn resulted in the
search for a successor. This successor was found in the Advanced Encryption
Standard, discussed in the next section.

4.3 Advanced Encryption Standard

4.3.1 Advanced Encryption Standard (1998, Vincent Rijmen and
Joan Daemen)

Originally called Rijndael, the Advanced Encryption Standard is the follow-up
NIST specification for encrypting electronic data since 2001 and thus considered20

to be the successor of DES, although AES takes a completely different approach
as a block cipher. This cipher was developed by the Belgian cryptographers
Vincent Rijmen and Joan Daemen. First published in 1998, it is now used all
over the world in many different applications. Similar to its predecessor, the
standard is a slightly modified version of the submitted cipher, in this case25

the block size has been fixed to 128 bits and the possible key sizes have been
limited to 128, 192 or 256 bits.

4.3.2 The Substitution-Permutation Network

Unlike DES, the AES cipher does not use a Feistel network but rather a structure
called substitution-permutation network (SPN) which heavily utilizes S-boxes
and a P-box to create the ciphertext. In fact, due to the S-box usage of DES,30

one can compare the SPN with the Feistel network version DES uses.
Round keys (similar to subkeys) are generated from the main key and

XOR’d with the current AES state before each round once after the last one
(see section 4.3.3 for details on the SPN in AES). A round resembles the Feistel
function in DES: The input split up and gets modified by some S-boxes, which35

are functions {0, 1}4 → {0, 1}4 this time, and by a P-box, which is omitted in
the last round.

To decrypt a ciphertext that has been encrypted using a SPN, one simply
needs to apply the inverses of the S- and P-boxes and apply the round keys in
reverse order.40
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Plaintext Ciphertext
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...
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encryption decryption
(perm. layer,
then subs. layer)

Figure 6: Encryption and decryption in the SPN

4.3.3 How AES Operates

All versions of Rijndael and thus AES operate on a column-major ordered byte-
matrix, like illustrated in figure 7. The number of iterations is determined by
the key size chosen. For an 128-bit key, AES will use 10 rounds, for an 192-bit
key 12 rounds and if using an 256-bit key, it will use 14 rounds to process each
input block. A round in AES is rather complex in comparison to what we have

6 3 1 7
1 9 5 0
1 0 2 4
2 4 5 9




3 4 2 1
9 7 5 3
2 0 3 8
6 0 5 2

 6 1 1 2 3 9 0 4 1 5 2 5 7 0 4 9

3 9 2 6 4 7 0 0 2 5 3 5 1 3 8 2

when saved contiguously in memory.

Figure 7: Examples of AES states and their memory transcription.

5

already seen, consisting of several processing steps unique to AES, independent
of each other, but dependant on the key.

In the first round, the current state gets XOR’d with the round key. This
operations is typically referred to as the AddRoundKey step and constitutes
the last operation of each following round.10

All following rounds - excluding the final round - consist of 4 different
operations: First of all, there is the SubBytes step, where each byte in the state
is run through a S-box and is replaced by the output. After that, the ShiftRows
step is applied to the current state, shifting each value in the second row of the
state one to the left, the ones in the third row two to the left and the each value15

in the last row three to the left (= one to the right). The last new operation
applied to the state is the MixColumns step, which applies fixed operations
on each byte in the column it’s currently processing, with each of the four
input bytes severely effecting the output. These three steps are followed by the
already known AddRoundKey step.20

The last iteration is almost like the preceding ones, but there is one major
difference: the MixColumns step is omitted.

For illustrations on the operations used in AES please refer to appendix
figure 1.

11
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5 Message Authentication Codes

5.1 General

After discussing ciphers in the last two major sections it’s time to widen the
scope a bit. There is more to digital cryptography than just encryption and
decryption, which is supposed to provide confidentiality.

The topic discussed in this section is about the Message Authentication
Codes (MACs), which are appended as a tag to an encrypted ciphertext to5

provide integrity. By executing the same algorithm on the received message as
used by the sender, one can compare the own results with the tag appended to
the message, which is how errors that occurred during transmission of the data
over a network or attempts of adversaries to alter ciphertexts can be detected.

Due to the limited extent of this paper I decided to only present one exam-10

ple of a MAC algorithm, which is built on the foundation provided by block
ciphers. However, please keep in mind that there are a lot of very different
MAC algorithm implementations out there that differ severely in some cases.

5.2 Cipher-based MAC

5.2.1 Cipher-based MAC (2003, Tetsu Iwata and Kaoru Kurosawa)

The cipher-based MAC (CMAC) is a message authentication code algorithm
based on the concept of block ciphers. CMAC is a derivative of CBC-MAC15

(general specification on MAC algorithms utilizing block ciphers) and was
recommended as a “block cipher mode of operation” by the NIST in 2005.
Similar to previous cases, the version published by the NIST is a renamed
version of a submission, in this case the cipher was called OMAC1 prior to the
recommendation.20

5.2.2 CMAC Tag Generation

Like all CBC-MACs, CMAC is cipher-dependant, which means that the output
of the algorithm is determined by the cipher used. The usual choice for CMAC
is AES-128, but to keep this more general we will consider any b-bit block
cipher E. Requirements for all MAC algorithms are a secret key, which is
usually forwarded to the cipher used, and a value l denoting the desired length25

of the tag, and, of course, an input message to generate the tag for. This input
message can either be a plaintext or a ciphertext, although generating a tag on
the ciphertext is more common, as it saves the time to decrypt the ciphertext
when anomalies are detected.

CMAC starts out by generating two extra keys (k1 and k2), incorporating30

the block cipher and a constant based on it’s blocksize. One of these extra keys
will be used on the last message block, which one will be decided by the length
of the last block: If it is a full block (|m[n]| = b) then k1 will be used, otherwise
it’s k2. By now you might have noticed that the message is split into blocks
again - a speciality of CBC-MAC. Then CMAC fixes a variable, c0, to 0b, so35

there are as many zeros as there are bits in a block. After having the initial
value for c0, the algorithm enters a loop and calculates the recursive function
ci = Ek(ci−1

⊕
mi) for i = 1, ..., n. The final tag will then be msbl(cn), with
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msb being the function outputting the most significant bits (the ones to the
far left).

A simplified version of this process is illustrated in figure 8, think of F (k, ·)
as the previously mentioned recursive equation.

m[0]

F(k,∙)

m[1]

F(k,∙)

m[2]

F(k,∙)

... m[n]

k1/k2

tag

Figure 8: Tag generation in CMAC

6 Public-Key Cryptography

6.1 General

In the next-to-last section of this document, I’d like to introduce you to the5

concept of public-key cryptography which takes a different approach on en-
cryption and decryption compared to the symmetric key ciphers discussed
previously. The main difference is that public-key ciphers do not use the same
key to encrypt and decrypt but rather two different ones, which declares them
as asymmetric key ciphers. What has been encrypted with the first key in10

the key pair can only be decrypted with the second one in that pair and vice
versa. Because of this, one of the keys is often available publicly to allow for
encrypted communication between two parties without having to share the
secret key first.

For example, if two people want to exchange encrypted mails, they both15

publish their second (public) key to a server and then each person is able to
encrypt their message using the public key of the other, who will decrypt it upon
receipt using their first (private) key. As explained in detail in section 6.2.2,
the size of the plaintext is extremely limited, which is why public-key ciphers
are usually used to securely transmit a session key for symmetric ciphers.20

The asymmetric public-key cipher discussed in the following section is the
most common cipher used in the public-key cryptography domain and is still
considered to be secure, despite it’s age.

6.2 RSA

6.2.1 RSA (1977, Ron Rivest, Adi Shamir and Leonard Adleman)

The RSA algorithm was the first publicly available usable asymmetric key
cipher, which uses the factoring of large integers as integral problem to provide25

the security base. It’s name arose from the initials of it’s authors surnames
Ron Rivest, Adi Shamir, and Leonard Adleman, which were working together
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at the MIT back then. A similar algorithm was already invented in 1973 by
Clifford Cocks in the UK, but was kept secret until 1997.

Because it plays the most important role in understanding RSA and the
way it works, we will discuss key generation in detail in this paper. This section
will make heavy use of the knowledge provided in section 2.6, so if you should5

struggle following through with the mathematics, consider revising that section.

6.2.2 RSA’s Asymmetric Key Generation

To generate an asymmetric key pair (1024 bit in this case), the generator
chooses two prime numbers p and q at random, each of a length of around 1024
bits. For comparison, the largest integer that would fit into 1024 bits would be
roughly 3.60× 10308. Then, those two primes are multiplied and the result is10

saved as N . Again, to illustrate the number range we are discussing: as p and
q are around 1024 bits, we would get (21025− 1)2 by multiplying them together,
which correlates to around 1.29× 10617 as an integer.

Next up, the generator chooses two integers e and d, one being the “encryp-
tion” and one the “decryption” exponent, such that e×d ≡ 1 in Zϕ(N). Usually,15

the desired length for e is quite short, but not too short in order to maintain
security. The most common value for e is actually 216 + 1, which equals 65, 537.
Despite the names, please keep in mind that ciphertext encrypted with the
decryption key can be decrypted with the encryption key, too.

The final public key will then be the pair (N, e), while the secret key will20

consist of (N, d).

6.2.3 Encryption and Decryption in RSA

Converting plaintexts to ciphertexts and vice versa is actually quite simple
when the key generation process was understood.

When encrypting a message m, one needs to turn it into an integer in
the range 0 ≤ mint < N using a reversible padding scheme. There are a25

lot of padding schemes available and - as the name suggests - they raise the
size of the message quite a bit, but provide additional security to make up
for it. The recommended padding scheme for RSA is the Optimal Asymmetric
Encryption Padding (OAEP), which is based on a Feistel network. After having
converted the message into it’s padded integer form, one only needs to calculate30

F (m, e) = mint
e in ZN to get the ciphertext c.

When decrypting a ciphertext c, one needs to recovermint from c and reverse
the padding scheme. In order to get the padded message out of the ciphertext,
the receiver only needs to calculate F (m, e)−1 = F (m, d) = cd in ZN . Now,
having mint and knowledge about the padding scheme used (which is usually35

standardized), he is able to undo the padding and receive m.
Please note that using the RSA cipher for encryption and especially decryp-

tion is computationally expensive in comparison to symmetric ciphers. Also,
the size of the data that can be encrypted is severely limited. To calculate the
maximum size of bytes one can encrypt, we calculate |k|

8
or |k|−384

8
+ 7 when40

using OAEP.
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6.2.4 Why the RSA Algorithm is a Trapdoor Function

As mentioned in section 2.6.8, a trapdoor function is considered to be one-way.
In the case of RSA this is accomplished by the Dlog-problem, which is also
called the RSA problem. Because of this RSA is considered secure until it is
possible to calculate the discrete logarithm of a huge number in efficient time,
which would reveal the secret exponent d when only possessing knowledge of e5

and N .

7 Measurements

7.1 General

All following tests have been conducted using a pre-compiled binary of the
program shown in appendix listing 1, which I named CryptoBench, simply
because it’s a benchmark based on cryptography. The devices used were my
PC with both Windows 7 (64bit) and Linux (CrunchBang Waldorf 2013011910

64bit) as operating system and with an AMD Phenom II X4 965 at 3.4GHz
core speed as CPU and my Laptop, with Linux (CrunchBang Waldorf 20130119
64bit) as operating system and an Intel Core i5-560M at 2.66GHz core speed.

Apart from the OTP and Salsa20, all ciphers were already implemented
in the standard libraries of the Go programming language, which made them15

easier to use and better optimized than I could. Luckily, Salsa20 was already a
testing candidate for the standard libraries, which made it possible to obtain a
semi-official implementation including hardware optimization. Thus, the OTP
is the only cipher that has been completely implemented by me and which did
not receive any kind of optimization targeted to CPU architectures.20

The following tables have been coloured to facilitate comparison, with the
colour choices being rather straightforward: Green-colored cells contain the
best time in the row, yellow-colored ones the intermediate one and red-colored
ones the worst measured time.

7.2 Results

Results Table 1: One-Time Pad encryption (equals decryption); message m, |k| = |m|

PC (Windows) PC (Linux) Laptop (Linux)
1024kb m 3ms 3ms 3ms
2048kb m 7ms 6ms 7ms
4096kb m 13ms 11ms 16ms
8192kb m 62ms 30ms 25ms
16384kb m 125ms 58ms 50ms

These numbers are not really surprising, OTP encryption consists of a25

simple XOR operation and is extremely fast. What’s standing out is that - on
larger input - the Windows test takes twice as long as the two on Linux. The
most likely explanation for this is that - although all test systems have been
stripped down to a bare minimum during runtime - the Windows environment

15
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Results Table 2: Salsa20 encryption (equals decryption); message m, 256bit key k, nonce
n

PC (Windows) PC (Linux) Laptop (Linux)
1024kb m, 64bit n 2ms 1ms 1ms
2048kb m, 64bit n 3ms 3ms 2ms
4096kb m, 64bit n 7ms 6ms 5ms
8192kb m, 64bit n 16ms 17ms 14ms
16384kb m, 64bit n 32ms 31ms 23ms
4096kb m, 192bit n 7ms 6ms 5ms
8192kb m, 192bit n 15ms 14ms 11ms
16384kb m, 192bit n 29ms 28ms 22ms

Results Table 3: DES encryption (E :) and decryption (D :); message m, 64bit key k

PC
(Windows)

PC (Linux) Laptop
(Linux)

E : 1024kb m, 131072 rounds 873ms 834ms 864ms
E : 2048kb m, 262144 rounds 1760ms 1669ms 1729ms
E : 4096kb m, 524288 rounds 3489ms 3342ms 3442ms
E : 8192kb m, 1048576 rounds 6943ms 6681ms 6867ms
E : 16384kb m, 2097152 rounds 13865ms 13363ms 13855ms
D : 1024kb m, 131072 rounds 862ms 832ms 868ms
D : 2048kb m, 262144 rounds 1731ms 1665ms 1725ms
D : 4096kb m, 524288 rounds 3448ms 3329ms 3472ms
D : 8192kb m, 1048576 rounds 6903ms 6660ms 6930ms
D : 16384kb m, 2097152 rounds 13791ms 13353ms 13790ms

was still a bit more bloated and more CPU power was consumed by the OS
itself.

When looking at results table 2 in comparison to results table 1 we notice
something odd: although Salsa20 is way more complex than the OTP, it required
less time. In fact, it’s more than twice as fast, on the Windows system even5

four times faster than the OTP. This is due to the hardware optimization
mentioned in section 7.1, which makes Windows a worthy competitor again.
Another thing we can see is that the hardware optimization for the operations
performed by Salsa20 is better on the Intel processor in the Laptop than on
the AMD processor in the PC, as the Laptop tops the PC in every Salsa2010

test, although it’s core runs at fewer Gigahertz.
Compared to the previous two tables, results table 3 makes DES seem

extremely slow in both encryption and decryption. And, well, that is exactly
the case. Because DES was deprecated for a long time now, hardware support
has been removed since generations of CPUs and all testing devices are relatively15

new. Thus, none of them have DES-specific optimization instructions built in,
which makes this test a competition of raw calculation power, which is why
the PC with Linux wins every round. When using Windows, the PC is almost
equal to the Laptop, sometimes better and sometimes worse.

The AES cipher is presenting us a way superior display in results table 4:20

Although the operations are more complicated than the ones used in DES, it
is faster by a factor of around 50 to 70 times ! This is not just a side effect of
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Results Table 4: AES encryption (E :) and decryption (D :); message m, key k

PC (Win-
dows)

PC
(Linux)

Laptop
(Linux)

E : 1024kb m, 128bit k, 65536 rds. 13ms 12ms 12ms
E : 2048kb m, 128bit k, 131072 rds. 26ms 24ms 25ms
E : 4096kb m, 128bit k, 262144 rds. 51ms 49ms 49ms
E : 8192kb m, 128bit k, 524288 rds. 101ms 98ms 99ms
E : 16384kb m, 128bit k, 1048576 rds. 203ms 199ms 198ms
E : 4096kb m, 192bit k, 262144 rds. 58ms 55ms 59ms
E : 8192kb m, 192bit k, 524288 rds. 116ms 111ms 115ms
E : 16384kb m, 192bit k, 1048576 rds. 231ms 222ms 227ms
E : 8192kb m, 256bit k, 524288 rds. 130ms 125ms 126ms
E : 16384kb m, 256bit k, 1048576 rds. 260ms 248ms 256ms
D : 1024kb m, 128bit k, 65536 rds. 12ms 12ms 12ms
D : 2048kb m, 128bit k, 131072 rds. 27ms 24ms 24ms
D : 4096kb m, 128bit k, 262144 rds. 50ms 49ms 48ms
D : 8192kb m, 128bit k, 524288 rds. 102ms 99ms 97ms
D : 16384kb m, 128bit k, 1048576 rds. 206ms 198ms 200ms
D : 4096kb m, 192bit k, 262144 rds. 57ms 55ms 56ms
D : 8192kb m, 192bit k, 524288 rds. 119ms 112ms 113ms
D : 16384kb m, 192bit k, 1048576 rds. 232ms 223ms 224ms
D : 8192kb m, 256bit k, 524288 rds. 130ms 125ms 125ms
D : 16384kb m, 256bit k, 1048576 rds. 262ms 250ms 250ms

the halved round count, but mainly due to AES being a NIST standard and
thus having specific, low-level instructions on every CPU to severely accelerate
the encryption and decryption process. No operating system really sticks out
here, and although Windows is almost always slower than Linux, it does not
perform too bad. Changing the key size from 128bit to 192bit doesn’t slow the5

cipher down too much, changing it to 256bit then shows a slowdown of around
20% compared to 128bit, which isn’t as much as one might have expected.

Now results table 5, the RSA table, is unique and not really comparable
to the previous. On the one hand, we have the drastic reduction in the mes-
sage length - while the other started with 1024kb (8388608bit), the first RSA10

encryption works on 96bit, which is due to the length limitation discussed in
section 6.2.3. On the other hand, the encryption and decryption processes are
different and there is a rather long span between encryption and decryption
times.

Starting with the key generation, we can see that larger keys mean an15

exponential increase in generation time. However, the key generation is based
on a RNG, which means that the speed of the key generation is “luck”-based,
as in how fast the algorithm can find a suitable number in the output of the
RNG, which is why the numbers are not really comparable.

The encryption process however is extremely fast, which is not too surprising,20

as the messages are quite small. Due to Windows not being able to measure time
in any unit smaller than milliseconds, I built a workaround into the program
to show that the measured time was less than one millisecond. But as we can’t
be sure which time exactly this was, it makes the Windows PC automatically
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Results Table 5: RSA key generation (G :), encryption (E :), decryption (D :); message
m, key k

PC
(Windows)

PC (Linux) Laptop
(Linux)

G : 1024bit k 118ms 151ms 162ms
G : 2048bit k 1437ms 1145ms 1762ms
G : 4096bit k 7301ms 25775ms 11430ms
G : 8192bit k 59936ms 215s 328s
G : 16384bit k 2367s 909s 1928s
E : 96bit m, 1024bit k < 1ms 92µs 94µs
E : 128bit m, 2048bit k < 1ms 182µs 219µs
E : 192bit m, 4096bit k 1ms 495µs 609µs
E : 256bit m, 8192bit k 2ms 1ms 1ms
E : 384bit m, 16384bit k 5ms 5ms 6ms
D : 96bit m, 1024bit k 4ms 4ms 4ms
D : 128bit m, 2048bit k 21ms 19ms 20ms
D : 192bit m, 4096bit k 104ms 98ms 109ms
D : 256bit m, 8192bit k 558ms 540ms 646ms
D : 384bit m, 16384bit k 3379ms 3530ms 4055ms

lose these rounds.
In contrast to the encryption process, the decryption process is pretty slow

compared to the message length. Just like with the key generation, we can see
an exponential rise in the time, related to the key length.

7.3 Conclusion

After discussing both symmetric and asymmetric ciphers and seeing how they5

perform, it’s time to draw a conclusion. It should be obvious that neither the
two symmetric cipher types, stream ciphers and block ciphers, nor any of them
and the asymmetric ciphers are indeed comparable, as their use cases vary too
much.

Generally said, keeping to current standards ensures confidentiality and10

efficiency, but widening the scope a bit to discover alternatives like Salsa20 can
also pay off, as we can see an obvious speed benefit. In the end, it’s always
the choice of the user, and because the cryptographic community is so big and
experienced, possible errors and weaknesses in ciphers are pointed out very fast,
so that with a little bit of research, one can avoid trouble.15

Another thing I want to emphasize is that under no circumstances, one
should try to invent his own cipher. There are a lot of examples where peo-
ple and companies did exactly that and it backfired completely. Always use
pre-defined, public, thoroughly tested ciphers made by cryptographers, where
possible weaknesses will be exposed by experienced people.20
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Appendix

A Note on Title Formatting

Capitalisation in titles is a widely discussed subject in English typography and there are no
fixed rules for formatting titles. I did my best to emphasize the most important words in the
titles in this paper and thus decided not to follow any given style.

A Note on Video Sources

The Coursera online course Introduction to Cryptography by Prof. Dan Boneh of the Stanford
University is one of my main sources. Due to no fixed rules regarding the notation of video
sources, I decided on the following scheme:
Surname, forename, video title (video length), course name, course provider

All videos referred to in this document are available for free, but require a user account on
Coursera. Because of this I decided to include all videos referred to in the sources along with
the other resources accompanying this paper.
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Appendix Figure 1: AES Operations SubBytes, MixColumns and ShiftRows;
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package main

import (
” fmt”
” time”
” os ”
”path/ f i l e p a t h ”
” runtime”
”hash”

10 ”hash/ ad l e r32 ”
RNG ” crypto /rand”
Sa l sa20 ” code . goog l e . com/p/go . crypto / s a l s a 20 ”
DES ” crypto /des ”
AES ” crypto / aes ”
RSA ” crypto / r sa ”

)

/∗
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type MeasuredTime s t r u c t {
l a b e l s t r i n g
time s t r i n g
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30 }

var Timers [ ] MeasuredTime

type Mi l l i s econdsTimer s t r u c t {
l a b e l s t r i n g
time time . Time

}

func NewMill isecondsTimer ( l a b e l s t r i n g ) Mi l l i s econdsTimer {
40 r e turn Mi l l i s econdsTimer { l abe l , time .Now( ) }
}

func ( t imer ∗Mil l i s econdsTimer ) Stop ( ) {
nanoseconds := time . S ince ( t imer . time ) . Nanoseconds ( )
m i l l i s e c ond s := nanoseconds / 1000000
seconds := m i l l i s e c ond s / 1000

i f m i l l i s e c ond s == 0 {
i f nanoseconds == 0 {

50 Timers = append (Timers , MeasuredTime{ t imer . l abe l , fmt . Sp r i n t f (”<1ms”) })
} e l s e {

Timers = append (Timers , MeasuredTime{ t imer . l abe l , fmt . Sp r i n t f (”%dns ” , nanoseconds )
})

}
} e l s e i f m i l l i s e c ond s > 60000 {

Timers = append (Timers , MeasuredTime{ t imer . l abe l , fmt . Sp r i n t f (”%ds ” , seconds ) })
} e l s e {

Timers = append (Timers , MeasuredTime{ t imer . l abe l , fmt . Sp r i n t f (”%dms” , m i l l i s e c ond s ) })
}

}
60

var Measurements ∗ os . F i l e

func Sta r tLogF i l e ( ) {
var e r r e r r o r

cwd , e r r := os . Getwd ( )

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to obta in cur rent working d i r e c t o r y ! ” )

70 panic ( e r r )
}

t imeStr ing := fmt . Sp r i n t f (”%d.%d.%d−%d %d %d” ,
time .Now( ) .Day ( ) , time .Now( ) .Month ( ) , time .Now( ) . Year ( ) ,
time .Now( ) . Hour ( ) , time .Now( ) . Minute ( ) , time .Now( ) . Second ( ) )

Measurements , e r r = os . Create ( f i l e p a t h . Join (cwd , ” cryptobench−” + t imeStr ing + ” . l og ”) )

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to c r e a t e l og f i l e ! ” )

80 panic ( e r r )
}

, e r r = Measurements . Write (
[ ] byte (

”CryptoBench by Jan Toennemann\n” +
runtime .GOOS + ” ” + runtime .GOARCH + ”\n\n”) )

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to wr i t e to l og f i l e ! ” )

90 panic ( e r r )
}

}

func EndLogFile ( ) {
var e r r e r r o r

f o r , measurement := range Timers {
, e r r = Measurements . Write ( [ ] byte (measurement . l a b e l + ” : ” + measurement . time + ”\n

”) )

100 i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to wr i t e to l og f i l e ! ” )
panic ( e r r )

}
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}

e r r = Measurements . Close ( )

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to c l o s e l og f i l e ! ” )

110 panic ( e r r )
}

}

/∗
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/∗
NEW CIPHER
STREAM
One−Time Pad

∗/
130 func OTPEncrypt ( l ength i n t ) {

OTPKey := make ( [ ] byte , l ength )
OTPPlaintext := make ( [ ] byte , l en (OTPKey) )
OTPCiphertext := make ( [ ] byte , l en (OTPKey) )

l a b e l := fmt . Sp r i n t f (”OTP; %d k i l oby t e message ” , l ength / 1024)
t imer := NewMill isecondsTimer ( l a b e l )
f o r i , v := range OTPPlaintext {

OTPCiphertext [ i ] = v ˆ OTPKey[ i ]
}

140 t imer . Stop ( )
}

/∗
NEW CIPHER
STREAM
Salsa20

∗/
func Salsa20Encrypt ( l ength int , nonce s i z e i n t ) {

var Salsa20Key [ 3 2 ] byte
150 copy ( Salsa20Key [ : ] , make ( [ ] byte , l en ( Salsa20Key ) ) )

Salsa20Nonce := make ( [ ] byte , nonce s i z e )

Sa l s a20P la in t ex t := make ( [ ] byte , l ength )
Sa l sa20Cipher text := make ( [ ] byte , l en ( Sa l s a20P la in t ex t ) )

l a b e l := fmt . Sp r i n t f (” Sa l sa20 : %d k i l oby t e message , 256 b i t key , %d b i t nonce ” , l ength /
1024 , nonce s i z e ∗ 8)

t imer := NewMill isecondsTimer ( l a b e l )
Sa l sa20 .XORKeyStream( Sa l sa20Ciphertext , Sa l sa20Pla in text , Salsa20Nonce , &Salsa20Key )

160 t imer . Stop ( )
}

/∗
NEW CIPHER
BLOCK
Data Encryption Standard

∗/
func DESEncrypt ( l ength i n t ) {

DESKey := make ( [ ] byte , 8)
170

DESPlaintext := make ( [ ] byte , 8)
DESCiphertext := make ( [ ] byte , 8)

DESCipher , e r r := DES. NewCipher (DESKey)

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to i n i t i a t e DES c iphe r . ” )
panic ( e r r )
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}
180

l a b e l := fmt . Sp r i n t f (”DES Encryption : %d k i l oby t e message , 64 b i t key , %d rounds ” , l ength
/ 1024 , l ength / 8)

t imer := NewMill isecondsTimer ( l a b e l )
f o r i := 0 ; i < l ength / 8 ; i++ {

DESCipher . Encrypt ( DESCiphertext , DESPlaintext )
}
t imer . Stop ( )

}

func DESDecrypt ( l ength i n t ) {
190 DESKey := make ( [ ] byte , 8)

DESPlaintext := make ( [ ] byte , 8)
DESCiphertext := make ( [ ] byte , 8)

DESCipher , e r r := DES. NewCipher (DESKey)

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to i n i t i a t e DES c iphe r . ” )
panic ( e r r )

200 }

l a b e l := fmt . Sp r i n t f (”DES Decryption : %d k i l oby t e message , 64 b i t key , %d rounds ” , l ength
/ 1024 , l ength / 8)

t imer := NewMill isecondsTimer ( l a b e l )
f o r i := 0 ; i < l ength / 8 ; i++ {

DESCipher . Decrypt ( DESPlaintext , DESCiphertext )
}
t imer . Stop ( )

}

210 /∗
NEW CIPHER
BLOCK
Advanced Encryption Standard

∗/
func AESEncrypt ( l ength int , k ey s i z e i n t ) {

AESKey := make ( [ ] byte , k ey s i z e )

AESPlaintext := make ( [ ] byte , 16)
AESCiphertext := make ( [ ] byte , 16)

220

AESCipher , e r r := AES. NewCipher (AESKey)

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to i n i t i a t e AES c iphe r . ” )
panic ( e r r )

}

l a b e l := fmt . Sp r i n t f (”AES Encryption : %d k i l oby t e message , %d b i t key , %d rounds ” , l ength
/ 1024 , k ey s i z e ∗ 8 , l ength / 16)

t imer := NewMill isecondsTimer ( l a b e l )
230 f o r i := 0 ; i < l ength / 16 ; i++ {

AESCipher . Encrypt ( AESPlaintext , AESCiphertext )
}
t imer . Stop ( )

}

func AESDecrypt ( l ength int , k ey s i z e i n t ) {
AESKey := make ( [ ] byte , k ey s i z e )

AESPlaintext := make ( [ ] byte , 16)
240 AESCiphertext := make ( [ ] byte , 16)

AESCipher , e r r := AES. NewCipher (AESKey)

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to i n i t i a t e AES c iphe r . ” )
panic ( e r r )

}

l a b e l := fmt . Sp r i n t f (”AES Decryption : %d k i l oby t e message , %d b i t key , %d rounds ” , l ength
/ 1024 , k ey s i z e ∗ 8 , l ength / 16)

250 t imer := NewMill isecondsTimer ( l a b e l )
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f o r i := 0 ; i < l ength / 16 ; i++ {
AESCipher . Decrypt ( AESPlaintext , AESCiphertext )

}
t imer . Stop ( )

}

/∗
NEW CIPHER
PUBLIC−KEY

260 RSA
∗/
var (

RSAPlaintext [ ] byte
RSACiphertext [ ] byte
RSALabel [ ] byte = make ( [ ] byte , 4)
RSAHash hash . Hash32 = ad le r32 .New( )
RSAKey ∗RSA. PrivateKey
RSAKeySize i n t

)
270

func RSAGenerateKey ( k ey s i z e i n t ) {
var e r r e r r o r

RSAKeySize = key s i z e

l a b e l := fmt . Sp r i n t f (”RSA key gene ra t i on : %d b i t key ” , RSAKeySize )
t imer := NewMill isecondsTimer ( l a b e l )
RSAKey, e r r = RSA. GenerateKey (RNG. Reader , k ey s i z e )

280 i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to i n i t i a t e RSA c iphe r . ” )
panic ( e r r )

}

t imer . Stop ( )
}

func RSAEncrypt ( l ength i n t ) {
var e r r e r r o r

290

RSAPlaintext = make ( [ ] byte , l ength )

l a b e l := fmt . Sp r i n t f (”RSA Encryption : %d b i t message , %d b i t key ” , length , RSAKeySize )
t imer := NewMill isecondsTimer ( l a b e l )
RSACiphertext , e r r = RSA. EncryptOAEP(RSAHash , RNG. Reader , &RSAKey . PublicKey , RSAPlaintext ,

RSALabel )

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to encrypt us ing RSA c iphe r . ” )
panic ( e r r )

300 }

t imer . Stop ( )
}

func RSADecrypt ( l ength i n t ) {
var e r r e r r o r

l a b e l := fmt . Sp r i n t f (”RSA Decryption : %d b i t message , %d b i t key ” , length , RSAKeySize )
t imer := NewMill isecondsTimer ( l a b e l )

310 RSAPlaintext , e r r = RSA.DecryptOAEP(RSAHash , RNG. Reader , RSAKey, RSACiphertext , RSALabel )

i f e r r != n i l {
fmt . Pr in t ln (” Fa i l ed to decrypt us ing RSA c iphe r . ” )
panic ( e r r )

}

t imer . Stop ( )
}

320 /∗
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\ | | /\ , | | | | |
∗/
func main ( ) {

Star tLogF i l e ( )
330

fmt . Pr in t ln(”=======================================”)
fmt . Pr in t ln(”=== CRYPTOBENCH − BY JAN TOENNEMANN ===”)
fmt . Pr in t ln(”=======================================”)
fmt . Pr in t ln (”\n”)

fmt . Pr in t ln (” S ta r t i ng t e s t s . . . \ n”)

fmt . Pr in t ln (”One−Time Pad : Encryption (1/5) ”)
OTPEncrypt (1048576)

340 OTPEncrypt (2097152)
OTPEncrypt (4194304)
OTPEncrypt (8388608)
OTPEncrypt (16777216)

fmt . Pr in t ln (” Sa l sa20 : Encryption (2/5) ”)
Salsa20Encrypt (1048576 , 8)
Salsa20Encrypt (2097152 , 8)
Salsa20Encrypt (4194304 , 8)
Salsa20Encrypt (8388608 , 8)

350 Salsa20Encrypt (16777216 , 8)
Salsa20Encrypt (4194304 , 24)
Salsa20Encrypt (8388608 , 24)
Salsa20Encrypt (16777216 , 24)

fmt . Pr in t ln (”Data Encryption Standard : Encryption (3/5) [ 1 / 2 ] ” )
DESEncrypt (1048576)
DESEncrypt (2097152)
DESEncrypt (4194304)
DESEncrypt (8388608)

360 DESEncrypt (16777216)
fmt . Pr in t ln (”Data Encryption Standard : Decryption (3/5) [ 2 / 2 ] ” )
DESDecrypt (1048576)
DESDecrypt (2097152)
DESDecrypt (4194304)
DESDecrypt (8388608)
DESDecrypt (16777216)

fmt . Pr in t ln (”Advanced Encryption Standard : Encryption (4/5) [ 1 / 2 ] ” )
AESEncrypt (1048576 , 16)

370 AESEncrypt (2097152 , 16)
AESEncrypt (4194304 , 16)
AESEncrypt (8388608 , 16)
AESEncrypt (16777216 , 16)
AESEncrypt (4194304 , 24)
AESEncrypt (8388608 , 24)
AESEncrypt (16777216 , 24)
AESEncrypt (8388608 , 32)
AESEncrypt (16777216 , 32)
fmt . Pr in t ln (”Advanced Encryption Standard : Decryption (4/5) [ 2 / 2 ] ” )

380 AESDecrypt (1048576 , 16)
AESDecrypt (2097152 , 16)
AESDecrypt (4194304 , 16)
AESDecrypt (8388608 , 16)
AESDecrypt (16777216 , 16)
AESDecrypt (4194304 , 24)
AESDecrypt (8388608 , 24)
AESDecrypt (16777216 , 24)
AESDecrypt (8388608 , 32)
AESDecrypt (16777216 , 32)

390

fmt . Pr in t ln (”RSA: 1024− b i t key (5/5) [ 1 / 5 ] ” )
RSAGenerateKey (1024)
RSAEncrypt (96)
RSADecrypt (96)
fmt . Pr in t ln (”RSA: 2048− b i t key (5/5) [ 2 / 5 ] ” )
RSAGenerateKey (2048)
RSAEncrypt (128)
RSADecrypt (128)
fmt . Pr in t ln (”RSA: 4096− b i t key (5/5) [ 3 / 5 ] ” )

400 RSAGenerateKey (4096)
RSAEncrypt (192)
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RSADecrypt (192)
fmt . Pr in t ln (”RSA: 8192− b i t key (5/5) [ 4 / 5 ] ” )
RSAGenerateKey (8192)
RSAEncrypt (256)
RSADecrypt (256)
fmt . Pr in t ln (”RSA: 16384− b i t key (5/5) [ 5 / 5 ] ” )
RSAGenerateKey (16384)
RSAEncrypt (384)

410 RSADecrypt (384)

fmt . Pr in t ln (”\ nAll t e s t s s u c c e s s f u l l y completed . ” )
fmt . Pr in t ln (” Please r e f e r to the l og f i l e f o r d e t a i l e d in fo rmat ion . ” )

EndLogFile ( )
}

Appendix Listing 1: CryptoBench.go
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