Lukas Mattes, Fachpreis in Physik 2020

In meiner Arbeit habe ich zwei Wetterballonflüge geplant, vorbereitet, durchgeführt und danach die dabei gesammelten Daten ausgewertet. Besonders aufregend war für mich der Start: Wenn man einmal den Balkon losgelassen hat gibt es kein Zurück mehr!

Louise Kersting, Fachpreis in Mathematik 2014

Beim Auswahlverfahren zu meinem jetzigen Studiengang war die Auszeichnung sicher von Vorteil.

Simon Loske, 1. Platz Chemie 2011

Die Auszeichnung mit dem Dr. Hans Riegel-Fachpreis hat mir einige Türen geöffnet – und wirkte sich sicher auch positiv auf die Zusage für mein Deutschlandstipendium aus.

Michelson-Interferometer Grundlagen und eigene Experimente

Kern meiner Facharbeit sind eigene Experimente mit dem Michelson-Interferometer. Als Voraussetzung hierzu werden in Kapitel 2 der experimentelle Aufbau und die physikalischen Grundlagen des Michelson-Interferometers erläutert. Die durchgeführten Experimente finden sich in Kapitel 3. Mit einer Strahlquelle (Diodenlaser) bekannter Wellenlänge wird das Interferometer zunächst kalibriert, um dann in einem zweiten Schritt mit dem Interferometer die Wellenlänge einer unbekannten Strahlquelle zu bestimmen. In Kapitel 3.4 wird das Michelson-Interferometer als Nachweisinstrument zur Verifizierung des (in der Theorie bekannten) Zusammenhangs zwischen Betriebstemperatur des Diodenlasers und emittierter Laserwellenlänge eingesetzt. In Kapitel 4 fasse ich meine Erfahrungen mit den Experimenten und die Ergebnisse der Messungen in einer Schlussbetrachtung zusammen.

Bei der Erarbeitung des Themas und der Beschäftigung mit den Hintergründen der Interferometrie ist mir deren Bedeutung für die Physik deutlich geworden. Im Anhang wird die Rolle des Michelson-Interferometers für die Veränderung des physikalischen Weltbildes - vom Ätherwind bis zu den Gravitationswellen – nachgezeichnet.

Anhang I (Rückblick) beleuchtet den Erfinder des Interferometers, den Physiker A. A. Michelson (Nobelpreis 1907), stellt eines der Schlüsselexperimente der Physik, das Michelson-Morley Experiment, vor und beschreibt seine Auswirkungen auf das physi-kalische Weltbild des 19. Jahrhunderts.

In Anhang II (Ausblick) werden der aktuelle Stand der Forschung zu Laser-Interfero-metern (Gravitationswellendetektoren) und die bahnbrechenden Messergebnisse (Nobelpreis 2017), die damit erzielt werden konnten, gezeigt. Ich schließe mit einem „Blick in die Glaskugel“: Was ist in Bezug auf die Weiterentwicklung der Laser-Interfe-rometrie zukünftig zu erwarten?

Download (PDF)

Preisträger

Florian Pausewang

Schulfach

Physik

Betreuende Universität

Rheinische Friedrich-Wilhelms-Universität Bonn

Ausgezeichnete Arbeiten

2015, Physik, 1. Platz,
Carlo Tasillo, Ruhr-Universität Bochum

Theoretische Überlegungen zur Erdrotation und deren experimenteller Nachweis durch den Nachbau eines Foucaultschen Pendels

mehr info

2016, Mathematik, 1. Platz,
Matthias Uschold, Universität Regensburg

Erweiterter Euklidischer Algorithmus in N

mehr info

2019, Informatik, 2. Platz,
Boris Giba, Johannes Gutenberg-Universität Mainz

Modellierung, Implementierung und Strukturvergleich eigener neuronaler Netze zur Handschrifterkennung und Vergleich mit moderner Bibliothek

mehr info